

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AD-A154 871

REPRINT

TECH. MEMO MAT/STR 1050 UNLIMITED

BR 944 46 TECH. MEMO MAT/STR 1050

ROYAL AIRCRAFT ESTABLISHMENT

IMPORTANCE AND SIGNIFICANCE OF TRANSITION TEMPERATURES

by

W. A. Lee

November 1984

DRIC

ALL PAGES IN THIS COCUMENT ARE CLASSIFIED FOR HITHER THAN THE REVISE CLASSIFICATION OF THE MOTOR

SIGNED

1 K 1 7 1 85

DATE

AUTHORITY

Procurement Executive, Ministry of Defence
Farnborough, Hants

85 5 28 09 6

OTIC FILE COPY

ROYAL AIRCRAFT ESTABLISHMENT

· i....

Technical Memorandum Mat/Str 1050

Received for printing 23 November 1984

IMPORTANCE AND SIGNIFICANCE OF TRANSITION TEMPERATURES

bу

W. A. Lee

SUMMARY

The importance of the transition temperatures of polymers is described with particular emphasis on their practical significance. An outline of the RAE Transition Temperature Data Bank is provided and RAE publications in the transition temperature field are tabulated.

DTIO COPY INSPECTED

Copyright
©
Controller HMSO London
1984

Accession For

NTIS GRA&I
DTIC TAB
Ununnounced
Justification

By_____
Distribution/
Availability Codes

| Avail and/or
Dist | Special

LIST OF CONTENTS

				Page
1	INTRODUCTION			3
2	IMPORTANCE AND SIGNIFICANCE OF TRANSITION TEMPERATURES			3
3	CONCLUSIONS			4
Appendix A				5
Appendix B				8
References				9
Docum	entation page	inside	back	cover

.

1 INTRODUCTION

This Memorandum is one of a series of reports and memoranda relating to the transition temperature (TTs) of polymers and explains briefly the motivation for studies in this area. The important part played by TTs in determining the properties of polymers is described with many examples of their practical significances. A keen academic and commercial interest in TTs is illustrated by reference to the RAE Transition Temperature Data Bank; RAE publications in the TTs field are listed.

2 IMPORTANCE AND SIGNIFICANCE OF TRANSITION TEMPERATURES

Over the last decade, a large number of polymers have been synthesised yet only a small proportion has achieved commercial success. Leaving aside those polymers synthesised solely for academic reasons, the origins of this failure are at least twofold. Firstly, there are many commercial polymers already available and between them they provide a wide spectrum of useful properties which makes it increasingly difficult to bring about a significant improvement on a cost effective basis. Secondly, the designing of new polymers for specific properties, 'molecular engineering', has sometimes been more hit and miss than it might have been. Nevertheless, there are important gaps at the top and bottom of the temperature scale and for special applications, and it becomes increasingly compelling to make more effective use of the vast amount of data currently available and direct new research into more profitable channels. To this end, many investigations are concerned with the relationships between structure and properties in order to make the best possible estimate of properties in advance of synthesis. In pursuit of this aim, an understanding is required of the main factors which govern polymer properties. A totally crystalline polymer, if such could be obtained, would be very brittle and not very useful. It follows therefore, that the state of the amorphous (non-crystalline) regions is one of the dominant factors insofar as physical, particularly mechanical, properties are concerned which determine, the degree of usefulness of a material. Differences in the physical properties of linear polymers are determined by variations in the types and rates of segmental motion of the polymer chains and the types and degrees of molecular ordering. Changes in the characteristics of the amorphous or crystalline regions occur at the TTs and it follows therefore that they are all important in determining the properties of a polymer. For example, transitions associated with the amorphous region determine the low temperature limit of the high reversible strain characteristic of elastomers, the moulding and the upper and lower service temperatures and to some degree the toughness of plastics, and the drawing temperature of fibres. In general terms, all physical properties of amorphous polymers which depend on the segmental relaxation rate undergo a major change on heating through the glass transition temperature (T_a) region. A plastic material which is largely emorphous may show a large drop in Young's modulus (perhaps 3 orders of magnitude) and, at the same time, a discontinuity in the temperature dependence of, or a marked change in, such properties as diffusivity, expansivity, refractive index, gas solubility, crazing, creep, damping, adhesion and chemical reactivity. For satisfactory strength and stiffness, many thersoplastic commercial polymers, particularly fibres, must have both the type and degree of

crystallinity controlled within appropriate limits. At the temperatures of crystal-crystal transitions (T_{ccs}), changes in density and mechanical properties can occur and at the melting point (T_{m}) there is a catastrophic fall in strength and stiffness in crystalline polymers. T_{ms} , T_{ccs} , and crystallisation temperatures assume considerable importance in governing the temperatures of processing.

It is evident that before embarking on any programme of polymer development or synthesis, close attention must be given to both amorphous and crystalline region TTs. The amassing of reliable and comparable information on TTs is the first step in the attempt to resolve what sort of polymer will 've the properties desired. It also yields much of the data needed to be able to decide whether an existing polymer has the required properties or may be further developed to do so.

In practical terms, the number of fields and applications in which a necessary interest in TTs has been shown is illustrated by the example index terms drawn from the RAE Transition Temperature Data Bank (see Appendix A) which was formed in co-operation with RAPRA and covers data up to 1979. Since that date, references to TTs have been recorded as a result of computer searches, but the references have mostly not been processed. An enormously diverse field of applications and interests is shown by the 1800 titles in the actual index. Appendix B briefly describes the RAE Data Bank the size of which is a measure of external interest in TTs and therefore of their significance to workers in the polymer field.

RAE papers and publications on transition temperatures have attracted much interest $^{1-20}$ as can be judged from over 100 citations in the Science Literature Index and correspondence on the subject from over 140 different persons.

3 CONCLUSIONS

Transition temperatures determine what sort of material (elastomer, plastic or fibre) a polymer may be, its temperature limitations, or advantages, in processing and in use, whether or not it will be in the glassy or rubbery state at its use temperature, and the temperatures at which some of the more significant changes in physical properties occur. They are of the greatest importance to the engineer as well as to the scientist trying to make new polymers with improved properties and to correlate properties with structure, indeed it has been said that "it is impossible to understand the properties of polymers without a knowledge of the types of transitions that occur in such materials. Nearly all the properties of polymers are determined primarily by these transitions and the temperatures at which they occur."

Adhesion, adhesive

Adhesive sheet

Adhesive tape

Ageing see also/Degradation

Aircraft window

Allotropy

Annealing

Antioxident

Antiplasticiser

Artificial leather

Bearings

Binding power index

Biomedical

Birefringence

Bond interchange

Bottle

Brillouin scattering

Carbohydrate

Car interior

Casting solvent

CED see/Cohesive energy density

Chemiluminescence

Clathrate

Coating compositions

Cohesive energy density (CED)

Cold forming

Cold rolling

Compressibility

Conduction/elect. Conductivity/elect.

Cracking

Crease recovery

Creep

Critical surface tension

Crystallinity

Crystallisation

Crystallisation (Rate)

Crystallisation Temp

Current regulating

Damping /Vibration damping

Deformation

Deformation energy

Degradation

Densified vol-

Density

Dental crowns

Depolarisation current

Dielectric properties

Dielectric relaxation

Diffusion

Dimensional stability

Drape stiffness

Drawing, /Drawn

Drawing temperature

Dyeing

Dynamic mechanical

Elasticity

Elasticity minimum temperature

Elastomers

Electrets

Electrical conductivity

Electrical insulation

Electrical resistance

Electric discharge

Elongation

Elongation ratio

Emulsion freeze-thaw stability

Encapsulation

Energy of rotational isomerisation

Etching

Excluded volume

Expansion coefficient

Explosives

Fabrication

Fabric production

Failure envelopes see Ultimate properties

Fatigue

Fibres

6T Fibre

Fibrillation Filler Films

Fire retardant Flatspot index Flex abrasion Flexibility

Flow temp.
Fluids
Footwear
Fracture
Free volume
Freezing point

Friction

Gas chromatography

GEM disubstitution

Glass reinforced plastics

Golf balls
Grafting
Granulating
Grease

Hardener see/Crosslinking (Structure)

Hardness
Heat capacity
Heat conductivity
Heat distortion
Hot pressing

Impact (Resilience) (Resistance) (Strength)

Internal friction
Internal pressure

Interpenetrating polymer network

Interplanar slippage

Ionic charge
Irradiation
Ladder polymers
Lamella thickness

Lamination
Laser-induced damage

Leather coating

Leather substitutes

Liquids
Load
Lubricant

Luminescence
Magnetic field
Magnetic tape

Mechanical behaviour Medical implant

Membrane

Minimum film fusion temperature

Modulus
Molar Ht.
Molar volume
Molec motion
Mooney viscosity

Moulding

Natural leather

Necking Nucleation

011

Optical activity Ozone cracking Packaging

Paint

Paper coating Peeling strength

Penetrant

Permeation, /Permeability

Phosphorescence
Photodegradation
Pipe couplings
Plastic yield
Poisson's ratio

Phase equilibria

Polishes

Polymer characterisation

Polymer design Polymer networks

Polymerisation conditions

Powder preparation Processability Product design Propellants

Propellant binders

Puhl Coef

Radiation aww Irradiation

Radical concentration

Reactivity

Reduced electrical resistivity

Refractive index

Relaxation time

Rigidity

Rolling

Safety glass

Scintillation intensity

Sealant

Seals

Sheet formation

Shrinkage

Surface tension

Surgical

Swelling

Terring

Tear Strength

Temperature conductivity

Tensile properties

Theory

Thermal conductivity

Thermal expansion

Thermal history

Solubility

Solubility parameter

Solution properties

Sound velocity

Specific heat

Specific retention Volume

Specific Volume

Spherulitic growth rate

Strain

Stress-optical coef.

Stress relaxation

Stretching

Thermal stability

Transport

Tyres

Varnish see/Paint

Vibration dampers

Viscoelasticity

Void formation

Volume expansion

Vulcanisation

Water absorption

Wear

Welding strength

Wetting

Wrinkle recovery (resistance) (see /Crease recovery (resistance)

Yarn production see also /Fibrillation

Yielding behaviour

Appendix B

THE RAE DATA BANK ON TRANSITION TEMPERATURES

As part of a programme on polymer development at RAE a data bank on transition temperatures of polymers was compiled. The majority of data related to transitions of the non crystalline phase of undiluted linear homopolymers, but a wider field of interest had been indexed to a lmited extent. The data bank comprised:

- (a) Index of 10700 data cards showing transition temperatures of individual polymers.
- (b) Author index comprising 11000 entries (based on first-named authors).
- (c) Subject index with 1800 subject headings and 14500 referenced information cards.
- (d) Computer based index of 1200 critically assessed glass transition temperatures of undiluted linear homopolymers in a chemical hierarchy and Tg value order together with a suite of over 100 computer programs to manipulate the data. Data up to 1972 was published in the second edition of the Polymer Handbook¹.
- (e) Handbook of Data Sheets on 90 carbon-chain fluoropolymers²
- (f) Handbook of Data Sheets on 197 fluoropolymers containing main-chain nitrogen³.
- (g) A Handbook of Data Sheets on fluoropolymers containing main-chain oxygen4.

REFERENCES

No.		Author	Title, etc
1	W.A. R.A.	Lee Rutherford	Glass transition temperatures. In Polymer Handbook, edited by J Brandrup, second edition, Section III, pp 139-192 J Wiley and Sons, Inc, New York, (1975)
2	W.A.	Lee Rutherford	RAPRA Data Handbook. Polymer transition temperature data sheets, carbon chain fluoro- polymers, Vol I. RAPRA, Shawbury, (1973)
3	W.A.	Lee Rutherford	RAPRA Data Handbook. Polymer transition temperature data sheets, fluoropolymers containing main-chain nitrogen, Vol II, Parts 1 and 2. RAPRA, Shawbury, (1974)
4	W.A.	Lee Rutherford	RAPRA Data Handbook. Polymer transition temperature data sheets, fluoropolymers containing main-chain oxygen or sulphur, Vol II, Parts 1 and 2 RAPRA, Shawbury, (1976)
5	W.A.	Lee	An analysis of factors governing the glass transition temperatures of polymers based on a review of available measurements. RAE Report No.CPM 8 (1964)
6	W.A.	Lee	Glass transition temperature of homopolymers: a bibliography and assessment of available data. RAE Technical Report 65151 (1965) Also published as Chapter III or Polymer Handbook, edited by J. Brandrup and E.H. Immergut, Interscience, NY, (1966)
7	W.A. J.H.	Lee Sewell	The influence of cohesive forces on the glass transition temperatures of polymers. RAE Technical Report 65112 (1965) Also published in J. Applied Polymer Science, 12(6), 1397 (1968)

. REFERENCES (continued)

No.	Author	Title, etc
8	W.A. Lee G.J. Knight	The ratio of the glass transition temperature to the melting point in polymers. RAE Technical Report 66005 (1966) Also published in British Polymer J., 2, 73 (1970)
9	G. Allen W.A. Lee	A critical survey of current views of the glass transition phenomena. RAE Technical Report 66090 (1966)
10	W.A. Lee D. O'Mahony	Calculation of the glass temperatures of polymers having alkyl side chains. RAE Technical Report 66292 (1966) Also published in J. Polymer Sci., Pt A-2, 8, 555 (1970)
11	W.A. Lee G.J. Knight	The glass transition temperatures of polymers. In Polymer Handbook, first edition, Edited by J. Brandrup and E.H. Immergut, (Section III, pages 61-91), published by J. Wiley and Sons, Inc, New York, (1966)
12	W.A. Lee	Some aspects of the problem of designing new heat- resistant fluids and elastomers; structures containing phenyleneperfluoroalkylene units. RAE Technical Report 66409 (1966)
13	J.M. Barton W.A. Lee	Definition of structural groups in the calculation of glass temperatures of homopolymers. RAE Technical Report 67119 (1967)
14	J.M. Barton W.A. Lee D. O'Mahony	Correlation of the glass transition temperatures of polyacrylates, polymethacrylates and polychloroacrylates with their themical structures. RAE Technical Report 67298 (1967)
15	J.M. Barton W.A. Lee	Contribution of the methylene group to the glass transition temperatures of polymers. Polymer, 9, 603 (1968)
16	W.A. Lee	Proposal for the evaluation of potentially flexible and heat resistant units in polymers. RAE Technical Memorandum Mat 67 (1969)

REFERENCES (concluded)

No.	Author	Title, etc
17	W.A. Lee B. Stagg	The internal plasticisation of aromatic polyesters by alkyl side chains. RAE Technical Report 71223 (1971)
18	W.A. Lee Shirley A. Watts	Correlation of the glass transition temperatures of carbon-chain fluoropolymers with their chemical structures. RAE Technical Report 74060 (1974)
19	W.A. Lee	Correlation of the properties of fluoropolymers with chemical structure. RAE Technical Memorandum Mat 195 (1974) (Invited paper presented at the 5th European Symposium on Fluorine Chemistry, Aviemore, Scotland, September 1974)
20	W.A. Lee Shirley A. Fowler	Correlation of the glass transition temperatures of heteroatom-chain fluoropolymers with their chemical structures. RAE Technical Report 75043 (1975) (Commerical-in Confidence)
21	D.W. van Krevelen	Properties of polymers. Correlations with chemical structure. Elsevier Scientific Publishing Company, Amsterdam, second edition, page 20 (1976)

REPORT DOCUMENTATION PAGE

Overall security classification of this page

UNCLASSIFIED

As far as possible this page should contain only unclassified information. If it is necessary to enter classified information, the box above must be marked to indicate the classification, e.g. Restricted, Confidential or Secret.

(to be added by DRIC)		riginator's Reference 3. Agency Reference 2. TM M&S 1050		4. Report Sec	4. Report Security Classification/Marking		
5. DRIC Code for Originator	5. DRIC Code for Originator 6. Originator (Corporate Author) Name and Location						
7673000W		Royal Aircraft Establishment, Farnborough, Hants, UK					
5a. Sponsoring Agency's Co	de	6a. Sponsoring Agency (Contract Authority) Name and Location					
7 Title Importance and significance of transition temperatures							
7a. (For Translations) Title	in Fore	eign Language					
b. (For Conterence Papers)	Title,	Place and Date of Confer	ence				
S. Author 1. Surname, Initials	9a. A	Author 2	9b. Authors 3	, 4	10. Date Pages Rets.		
Lee, W.A.					Nov 1984 11 21		
11. Contract Number	1. Contract Number 12. Per		13. Project		14. Other Reference Nos.		
15. Distribution statement (a) Controlled by — (b) Special limitations (if any) — If it is intended that a copy of this document shall be released overseas refer to RAE Leaflet No.3 to Supplement 6 of							
MOD Manual 4. i6. Descriptors (Keywords)		(Descriptors marked	* are relected fro	m TEST)			
Class transition,	, Ter	nperature data ba		Jiii 1231)			
17. Abstract							
The importance of the transition temperatures of polymers is described with particular emphasis on their practical significance. An outline of the RAE Transition Temperature Data Bank is provided and RAE publications in the transition temperature field are tabulated.							
				•			

END

FILMED

7-85

DTIC